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Abstract—Mobile augmented reality applications have received
considerable interest in recent years, as camera equipped mobile
phones become ubiquitous. We have developed a “Point and
Find” application on a cell phone, where a user can point
his cell phone at a building on the Stanford campus, and get
relevant information of the building on his phone. The problem
of recognizing buildings under different lighting conditions, in the
presence of occlusion and clutter, still remains a challenging prob-
lem. Nister’s Scalable Vocabulary Tree (SVT) [1] approach has
received considerable interest for large scale object recognition.
The scheme uses heirarchical k-means to create a vocabulary
of features or “visual words”. We first show how we can use
a SVT and an entropy-based ranking metric to achieve 100%
recognition on the well known ZuBuD data set [2]. We present a
SVM kernel-based extension to the SVT approach and show that
it achieves a 100% recognition rate as well. We discuss the short-
comings of the ZuBuD data set, and present a more challenging
Stanford-Nokia data set, with promising results.

I. INTRODUCTION

H IGH-END mobile phones have developed into capa-
ble computational devices equipped with high-quality

color displays, high-resolution digital cameras, and real-time
hardware-accelerated 3D graphics. They can exchange infor-
mation over broadband data connections, and be aware of their
locations using GPS. These devices enable many new types of
services such as a car or pedestrian navigation aid, a tourist
guide, or a tool for comparison shopping. For many of these
services knowing the location is a critical clue, but that is not
enough. For example, a tourist can be interested in finding
information on several objects or stores visible from that
location. Pointing with a camera-phone provides a natural way
of indicating ones interest and browsing information available
at a particular location. Once the system recognizes the target
that the user is pointing at, it can augment the viewfinder with
graphics and hyper-links that provide further information (such
as the menu or customer ratings of a restaurant) or services
(reserve a table and invite friends for a dinner). We call such
a system a Mobile Augmented Reality (MAR) system.

A. Stanford-Nokia MAR System

Figure 2 gives an overview of the system which is divided
into two major components, a mobile device and a server.
These components communicate over a wireless network.
Once the user takes a picture, we extract SURF features
[3] from the image and send them to a server. The server
recognizes the building or the object in the picture by matching
the image against a database of geo-tagged images. The server
groups the geo-tagged images into location cells typically of

Fig. 1. A snapshot of the outdoors augnted reality system being used.
The system augments the viewfinder with information about the objects it
recognizes in the image taken with a phone camera.

Fig. 2. System block diagram. The system is divided into two major
components, a mobile device and a server, which communicate over a wireless
network.

the size 1 km × 1 km. A location cell of this size would
typically have 50-200 points of interest (buildings, restaurants,
signs, etc). The recognition algorithms used are described in
the following sections. The recognition algorithms return a
ranked list of database images that are closest in content
to an incoming query image. Affine geometric consistency
checks are then carried out to remove spurious matches. In
this paper, however, we will be focusing on the recognition
algorithms that return a ranked list of images, prior to the
geometric consistency check. Once the recognition is done,
the server sends relevant information back to the phone. The
phone finally overlays the information on the image, as shown
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in Figure 1 above.

B. Contributions and Paper Outline

This paper describes two methods for identifying the con-
tents of the picture taken by a user with a camera phone. The
algorithms described here allow recognition among a large
number of classes or points of interest. A coarse estimate of
the user’s location via GPS or cell tower triangulation suffices
to narrow down the search space (e.g., 1 km × 1 km). Even
when a coarse estimate of the user’s location is available, the
search space may still be substantial and the user could be
looking at one of many objects or buildings. We propose using
a Scalable Vocabulary Tree (SVT) [1] in order to allow for
image queries against a larger collection of images. The SVT
allows us to define a bag of “visual words”, analogous to a
set of textual words. First, we use an entropy based distance
metric proposed by [1] to rank the similarity of images in
the database to a query image. We then propose a Support
Vector Machine (SVM) extension of the SVT to learn the class
membership by representing the different classes as bags of
“visual words”.

Section II discusses some of the prior work in this field.
Sections III and IV describe the algorithms used for image
matching on the server. Section V describes the two data
sets used in the paper. Section VI evaluates the performance
of the algorithms on the two data sets. We propose some
enhancements VII to the schemes described here and conclude
in VIII.

II. PRIOR WORK

Our work represents a special category of content-based
image retrieval (CBIR) [4], [5], [6]. We want to recognize
real-world images from a large set of categories (buildings,
landmarks, logos) but we want to do it under a variety of
viewing and lighting conditions. We want the algorithms to
work in the presence of transient clutter in the foreground, and
changes in appearance. Recent work in object-based image
retrieval uses a vocabulary of “visual words” to search for
similar images in very large image collections [7], [1], [8],
[9]. The SVT approach has received considerable attention in
the last year, due to its simplicity and its ability to categorize
an object amongst a large number of classes.

III. SCALABLE VOCABULARY TREE

For the MAR application, we are interested in fast retrieval
from a database of features containing noisy data. In this
paper, we evaluate the bag of visual words approach for our
application. There are two parts to the SVT; building the data
structure for the images in the database, and then retrieving
the closest match for an incoming query image.

A. Hierarchical K-Means

An SVT is a data-structure that allows for efficient vector
quantization and nearest-neighbor searching of feature vectors.
The features in consideration are SURF features, which are

Fig. 3. Feature cluster. The features assigned to the same scalable vocabulary
tree node are similiar.

stored as 64-dimensional floating point numbers. The vocab-
ulary tree is built using hierarchical k-means clustering. A
large set of representative descriptor vectors are used in the
unsupervised training of the tree. Instead of defining the final
number of clusters or quantization cells, k defines the branch
factor (number of children of each node) of the tree. First, an
initial k-means process is run on the training data, defining
k cluster centers. The training data is then partitioned into k
groups, where each group consists of the descriptor vectors
closest to a particular cluster center. The same process is
then recursively applied. The path down the tree to any node
can be encoded by a single integer, which is then used to
represent that node or quantization cell. The hierarchical k-
means, compared to the traditional k-means, is a scalable
approach as it allows us to add features to the tree without
having to rebuild the tree with the addition of new features.

On the server side, we group images into location cells of
1 km × 1 km. A SVT is built for all the features in each
such location cell. We envision having 1000-10000 images in
a location cell of this size. For this paper, we consider all
the images in one such location with around a 1000 images
in it. We extract features from all the images in the data set
and insert them into the vocabulary tree. Each feature in the
vocabulary tree is quantized to a leaf node of the tree. Each
node of the tree stores a pointer to all the features that were
quantized to the cell. The features, thus, point back to the
images from which they were extracted. A typical cluster of
features is shown in Figure 3.

B. Scoring Metric

Once the quantization is defined, we wish to determine
the relevance of a database image to the query image. The
relevance score is based on how similar the paths down the
vocabulary tree are for the descriptors from the database image
and the query image. We take into considerations all the leaf
nodes as well as interior nodes. Since interior nodes will be
visited more frequently then leaf nodes, an entropy weighting
wi should be assigned to each node i:

wi = ln
N

Ni

where N is the total number of features in the database, and Ni

is the number of features in the database that pass through node
i. The entropy weighting in the metric gives less weight to the
nodes that have more paths through them, and more weight to
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the nodes visited less frequently. This is because nodes that are
encounterd more frequently are less discriminative and carry
less information about the image.

Having computed an entropy measure for every node in the
SVT, we can then compute vectors that represent each database
and query image. We define q and d to represent query and
database vectors, respectively.

qi = niwi

di = miwi

Here ni and mi are the number of descriptor vectors of the
query and database image, respectively, with a path through
node i. Thus, each image is represented by a vector with T
elements, where T is the number of nodes in the vocabulary
tree. A database image is then given a relevance score based
on the normalized difference

s(q, d) =‖ q

‖ q ‖ −
d

‖ d ‖ ‖

between the query and database vectors. Here, we consider
an L1-norm.

The two parameters that need to be fixed for the SVT are the
branch factor and the depth. Based on the recommendations
in [1], we fix the branch factor to 10 and the depth to 6. This
generates 1M leaf nodes in the tree.

Once the relevance scores are computed, we have a ranked
list of images. Additionaly, geometric consistency checks are
carried out to figure out the correct match. The geometric con-
sistency check is computed via a RANdom SAmple Consensus
(RANSAC) algorithm that fits an affine model to the point
matches in the query and database image. However, for this
paper, we are interested only in the quality of the retrieval
prior to the affine consistency check.

IV. SUPPORT VECTOR MACHINE EXTENSION

We treat this problem as a traditional classification problem
and present a SVM extension to the SVT approach. The
SVT approach allows us to define images as distributions (or
histograms) of features. Let the cluster centers of the T nodes
of the vocabulary tree be (p1, p2, ..., pT ).

We extract the features from each image,
and represent the image as the distribution
(p1, u1), (p2, u2), (p3, u3), ..., (pT , uT ) where the ui’s
are the number of features assigned to cluster i, divided by
the total number of features. Thus ui’s are the proportion of
features in the image assigned to cluster i. Note that we use
all the nodes of the SVT as ”visual words”, and not just the
leaf nodes.

We compare two histograms by using the χ2 distance,

D(u,w) =
1
2
Σi

(ui − wi)2

ui + wi

We can train a SVM classifier with Gaussian kernels based
on a χ2 distance between two image distributions. Such an
approach has been used in the literature for texture and object
recognition [10].

In a two-class case, the decision function for a test sample
x has the following form,

g(x) = ΣiαiyiK(xi, x)− b

where K(xi, x) is the value of a kernel function for the
training sample xi and the test sample x, yi is the class label
of xi (+1 or -1), ai is the learned weight of the training sample
xi, and b is a learned threshold parameter. The training samples
with weight ai > 0 are support vectors.

We define a Gaussian kernel function, as defined below.

K(Si, Sj) = exp
(
− 1

A
D(Si, Sj)

)

It is shown in the literature that the Gaussian kernel with a
χ2 distance function is a Mercer kernel [10].

For a SVM, there are two parameters that need to be chosen
carefully, the kernel parameter A and the SVM regularization
parameter C. The C parameter is chosen using cross valida-
tion. We set A to the mean value of the χ2 distances between
all training images in the data set as suggested by [10]. The
paper claims that choosing this value produces comparable
results to the brute-force search with cross-validation. We
choose this method since it is computationally cheaper.

As described in the system diagram, GPS information sig-
nificantly narrows down the search space. However, the input
image can belong to one of many point-of-interest classes.
Standard SVMs are used in the two-class setting for binary
detection. To extend the SVM to multiple classes, we use
the one-against-one technique. The one-against-one technique
trains a classifier for every pair of classes, and a majority
vote is carried out to determine to which class a query image
belongs. This approach also returns a ranked list of classes
for an incoming query image. We use the one-against-one
technique to avoid the problem of unbalanced data sets. Also,
the one-against-one technique is said to perform as well as the
one-against-other technique for multi-class SVMs [10].

V. DATA SETS

A. ZuBuD Dataset

The ZuBuD database [2] consists of 640×480 pixel, color
images of 201 buildings in Zurich, each represented by 5
images acquired at random arbitrary view points. It also seems
that the images were collected around the same time. The
images in the training set and the test set are very similar
to each other, as evident in the results shown in Figure 4.
The authors of the ZuBuD database also created 115 query
images (320×240) of a subset of the same buildings to test the
performance of their recognition system. To our knowledge,
six papers have reported results on the ZuBuD dataset with
recognition rate ranging from 40.87% in [11] to 80% in [12]
to 100% in [13]. Here recognition rate is defined as the percent
of the time that the system’s top choice is correct.

B. Nokia-Stanford Dataset

The Nokia-Stanford outdoors image data set contains 1060
640x480 images taken with a camera-phone from Stanford
Campus, Stanford Shopping Center, and Santa-Cruz Avenue.
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TABLE I
TABLE: % OF TOP MATCHES CORRECT

SVT Entropy Scoring SVM extension
ZuBuD 100 100

Stanford-Nokia 72 52

The images have a wide coverage of 33 different points of
interest. However, the dataset is intentionally non-uniformly
sampled. The images are taken from difference seasons, under
varying lighting conditions, from different angles, and with a
lot of image clutter. With this dataset it is generally more diffi-
cult to achieve good matching performance. We use 33 query
images for evaluating the performance of our algorithms.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of our algorithms, we consider
two metrics. For the SVT ranking metric algorithm, we look
at the percentage of correct matches for each one of the top 5
ranked images. Additionally, we also consider the percentage
of images that have at least one correct match among the top
5 matches. The SVM algorithm returns a ranked list of classes
aswell. We consider the percentage of correct class matches
among the top 5 ranked classes.

For the SVM, the regularization parameter C was chosen by
carrying out a brute force search. The value of C that gave the
highest accuracy by using 5-fold cross-validation was chosen
as seen in Figure 11. A modified version of the open source
libSVM library [14] was used for the SVM algorithms.

In the ETH dataset, Figure 5 shows that all the images at
the top of the ranked list are correct. However, the percentage
of correct matches decreases as we go down the ranked list,
shown in Figure 5. Since the top match is always correct, there
is at least one correct match in the top 5 matches, shown in
Figure 6. The SVM algorithm performs well on the ETH data
set. As seen in Figure 7, for each query image, the class at
the top ranked list is correct. We believe that this is because
the training set and test images are very similar - this is most
probably because the test data was collected at the same time
as the training data. We observe that the SVM algorithm is
faster than the SVT approach. This is because the SVM is
O(Number of classes), while the SVT approach is O(Number
of database images with at least one feature in common).

However, these approaches do not work as well on the
Stanford dataset. We observe 70% of the top matches are
correct in Figure 8. Also, just like in the case of the ETH
data set, the percentage of correct matches decreases as we go
down the ranked list, as shown in Figure 8. This is because
the Stanford dataset is much more challenging and the images
have a lot more occlusion and clutter. However, we do find
atleast one correct match among the top 5 matches, shown
in Figure 9. For the SVM, 52% of the top match classes are
correct, and the correct matching class is found 84% of the
time within the top 5 classes.

Partial occlusion of the building causes the distribution of
features to change, thus affecting the entropy based scoring
metric, as well as the SVM training.

The results have been tabulated in Tables I and II.

Fig. 4. Sample matching results for images from the Stanford and Nokia
data set

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZuBuDSVT Results

Match num

%
 o

f C
or

re
ct

 M
at

ch
es

Fig. 5. ETH Data Set: Plot of % of correct matches vs. Rank. The results
are for the SVT entropy based scoring approach. We observe that the first
match is always correct, and the % of correct matches decreases as we walk
down the ranked list.
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Fig. 6. ETH Data Set: Plot of % of query images with atleast one correct
match within the top N ranks vs. Rank. The results are for the SVT entropy
based scoring approach. Since, the first match is always corret, the plot stays
constant at 100%
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TABLE II
TABLE: % OF MATCHES CORRECT IN THE TOP 5

SVT Entropy Scoring SVM extension
ZuBuD 100 100

Stanford-Nokia 100 84
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Fig. 7. ETH Data Set: Plot of % of query images with correct class within
the top N ranks vs. Rank. The results are for a 200 class SVM with majority
voting. We observe that the top ranking class is always correct.
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Fig. 8. Stanford Data Set: Plot of % of correct matches vs. Rank. The
results are for the SVT entropy based scoring approach. We observe that the
first match is correct 70% of the time, and the % of correct matches decreases
as we walk down the ranked list.
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Fig. 9. Stanford Data Set: Plot of % of query images with atleast one correct
match within the top N ranks vs. Rank. The results are for the SVT entropy
based scoring approach. We observe that all query images have atleast one
correct match within the top 5 images
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Fig. 10. Stanford Data Set: Plot of % of query images with correct class
within the top N ranks vs. Rank. The results are for a 33 class SVM with
majority voting. We observe that the top ranking class is correct 52% of the
time. The correct match lies within the top 5 for 84% of the query images
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Fig. 11. Stanford Data Set: Plot of accuracy vs the SVM regularization
parameter C. The value of C is varied from 0.0625 to 8. This is for Stanford
data set for a 33 class SVM with majority voting. We observe the optimal
value of C to be 2.

VII. ENHANCEMENTS

We would like to improve the performance of the SVM
and SVT algorithms on the Stanford-Nokia dataset. Currently,
we have a relatively small number of images per class (on
average 20-30) for the SVM training stage, and a total of only
about a 1000 images. Our database is constantly growing as
more people upload images. We are interested in performing
experiments on data sets as large as 10000 images. The
performance of the SVM might improve if more training data
were available for each class [9].

Also, as user generated images tend to be noisy, we would
like to learn the discriminative features for each point of
interest. Similarly, we would like to use supervised and unsu-
pervised machine learning techniques for learning foreground
and background features in each image [15].

VIII. CONCLUSION

We present algorithms for building recognition in a large
database of images. We use hierarchical k-means to create a
bag of ”visual words”. These visual words are used to train
SVMs for different classes of buildings. For recognition, we
consider two algorithms – an entropy based scoring metric
based on the SVT, and a majority voting scheme based on a
multi-class SVM. We test our algorithms on the well known
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ETH building data set, and a more challenging Stanford-Nokia
data set, collected from cell phone camera images in the
last one year. We observe that both the SVT entropy based
scoring, and the SVM algorithm work exceedingly well for
the ETH data set (100%). The results are promising for the
more challenging Stanford-Nokia data set. The SVT entropy
based scoring algorithm finds the top match correct 70% of
the time, and finds the correct match 100% of the time within
the top 5 images. The SVM approach finds the correct class
within the top 5 classes, 84% of the time.

IX. NOTE

The following modifications were made after the poster
session and led to a significant improvement in results for
both approaches described in the paper.

1) Including interior nodes of SVT as ”words” for the SVM
approach.

2) Selection of regularization parameter via brute force
search and n-fold cross validation.

3) Using libSVM package for SVM algorithms.
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